
CPSC 457 Notes

Brian Pho

June 28, 2017



Table of Contents

1 Slide Set 1: Administrative and Introduction 5
1.1 Main Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 What is an Operating System? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Important Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Multiprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Slide Set 2: Hardware, Booting, Interrupts, and VMs 7
2.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Hardware Review - I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Booting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6.1 Kernel Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6.2 User Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Direct Memory Access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.10 Interrupts vs. Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.11 Kernel Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.12 Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Slide Set 3: System Calls and Processes 10
3.1 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Program vs Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Process Control Block (PCB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Operations on Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Slide Set 4: Processes and Threads 13
4.1 CPU Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Process Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Process Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Process Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Process States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Context Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.9 Process vs Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



4.10 Why Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.11 Benefits of Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.12 Why Threads are Lightweight than Processes . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.13 User-Level Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.14 Kernel-Level Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.15 Thread Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Slide Set 5: Concurrent Programming (Thread Pools, Critical Sections, Mutexes, Din-
ing Philosophers) 19
5.1 Thread Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Unix Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Reentrant Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Thread Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5 Race Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6 Critical Sections and Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7 Mutex (aka Lock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Slide Set 6: Concurrent Programming (More Synchronization Mechanisms) 21
6.1 Condition Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2.1 Binary Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.2 Counting Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Monitors vs Semaphores vs Mutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Spinlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.6 Compare-and-Swap(CAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.7 More Synchronization Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.8 Priority Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Slide Set 7: Other Synchronization Mechanisms & CPU Scheduling 23
7.1 Good Race-Free Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Achieving Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2.1 Disabling Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2.2 Lock Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2.3 Strict Alternation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.4 Peterson’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.5 Synchronization Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.6 Compare-and-Swap (CAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.7 Test-and-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.8 Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.9 Bounded Waiting with Synchronization Hardware . . . . . . . . . . . . . . . . . . . 25

7.3 CPU Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 Process Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.5 When to Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.6 Categories of Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7 Scheduling Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.8 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.8.1 First Come First Serve (FCFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.8.2 Round Robin (RR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.8.3 Shortest Job First (SJF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



7.8.4 Shortest Remaining Time Next (SRTN) . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Slide Set 8: CPU Scheduling 32
8.1 Operation Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Scheduling Algorithm Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Preemptive Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.4 CPU Scheduling on Batch Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5 CPU Scheduling on Interactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.5.1 Shortest-Process-Next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5.2 Fair-Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5.3 Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5.4 Multilevel Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5.5 Multilevel Feedback Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.5.6 Lottery (Probabilistic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.6 CPU Scheduling on Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.6.1 Rate-Monotonic (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.6.2 Earliest-Deadline-First (EDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.7 Thread Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.7.1 User-Level Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.7.2 Kernel-Level Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.8 Other Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.9 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Slide Set 9: Deadlocks 39
9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3 Necessary Deadlock Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.4 Resource Allocation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.5 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.6 Methods for Dealing with Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.7 Deadlock Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.7.1 Avoid Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.7.2 Avoid Hold and Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.7.3 Avoid No Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.7.4 Avoid Circular Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.8 Deadlock Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.8.1 Safe State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.8.2 Deadlock Avoidance Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.9 Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.9.1 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.10 Deadlock Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.10.1 Process Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.10.2 Process Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.10.3 Resource Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10 Slide Set 10: Memory 45
10.1 Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.1.1 Physical Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.1.2 Logical Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.2 Binding of Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3



10.3 Memory-Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.4 Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.5 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.5.1 Fixed Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.5.2 Dynamic Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.6.1 Bitmaps & Fixed Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.6.2 Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.7 Memory Allocation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.8 Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.9 Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.10Demand Paging Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.11Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.12Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11 Slide Set 11: Paging 48
11.1 Shared Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.2 Page Fault Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11.2.1 Belady’s Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.3 Page Table Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11.4.1 Translation Look-Aside Buffers (TLBs) . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.4.2 Simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.4.3 Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.4.4 Inverted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.4.5 Hashed IPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.5 Page Replacement Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.5.1 First-In-First-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.5.2 Optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.5.3 Least Recently Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.5.4 CLOCK Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.6 Thrashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.7 Copy on Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

12 Slide Set 11: Input/Output 52
12.1 Disk Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12.1.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2 Disk Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12.2.1 FCFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2.2 SSTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2.3 SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2.4 C-SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2.5 C-LOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12.3 RAID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.4 I/O Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13 Slide Set 12: File Systems 55

4



Chapter 1

Slide Set 1: Administrative and
Introduction

1.1 Main Topics

• Processes

• Threads

• Concurrency

• Scheduling

• Deadlock

• Memory

• File Systems

• Input/Output

1.2 What is an Operating System?

OS is a piece of software between hardware and applications. Deals with

• Performance

• Resource allocation

• Security

It manages all of the resources. Files are an abstraction by the OS in place of manual disk writing/reading.
It is also the software that runs all of the time (in kernel mode). An OS may be views as an extended
machine (abstraction) or as a resource manager. A batch system is when similar operations are groups
together. The GUI is not part of the OS (kernel) but rather the shell

5



1.3 Important Concepts

• Multiprogramming: the illusion of parallel processing by quickly switching programs (hold multi-
ple programs in memory) (like pipelining)

• Spooling: a buffer for IO devices

• Timesharing: multiple users using the same machine or an interactive service for multiple users
(extension of multiprogramming)

• Multiplexing: the sharing of resources in time and space

Buffering vs Spooling: Buffer is actively asking, Spooler is actively receiving.

1.4 Multiprogramming

6



Chapter 2

Slide Set 2: Hardware, Booting, Interrupts,
and VMs

2.1 CPU

The unit in a computer that performs computations. 4 steps in a CPU cycle:

1. Fetch

2. Decode

3. Execute

4. Repeat steps 1-3

Special purpose registers

• Program counter (PC): holds address of next instruction

• Stack pointer: points to the top of the current stack in memory

• Status register: interrupt flag, privilege mode, zero flag, carry flag

CPU pipelining: perform multiple steps per cycle. A superscalar CPU uses a buffer to allow multiple FDE
units to run. The speed of a pipeline is the speed of the slowest unit in the pipeline.

2.2 Caches

Memory that is quickly accessible by the CPU.
A cache hit is when the data/instruction needed by the CPU is found in the cache.
A cache miss is when the data/instruction needed by the CPU is not found in the cache.
There is L1 and L2 cache. L1 cache is inside each core while L2 cache is shared by all of the cores.
Important memory is kept very close to the CPU.

2.3 Memoization

Optimization technique similar to caching. Trade memory for speed. Method is what makes dynamic
programming work. Stores the results of an expensive computations.

7



2.4 Hardware Review - I/O

Device Controller: chip(s) that control a device
Device: connected to the computer through the controller
Device Driver: software that talks to a controller
Buses: wires that transfer data between computer components

2.5 Booting

Steps when a computer is turned on

1. BIOS started

2. Check RAM, keyboard, and other devices

3. Record interrupt levels and I/O addresses of the devices

4. Determine the boot device

5. Read from boot device into memory

6. Read secondary boot loader into memory

7. Loader reads in the OS

8. OS queries BIOS to get configuration info and initializes all device drivers

9. OS creates device table and all necessary background processes

2.6 Kernel

Basic unit of the OS and is always running. “Running at all times” mostly means listening and responding
to events from hardware. Not all parts of the OS run in kernel mode, some parts run in user mode. User
mode applications cannot directly talk to hardware, it must go through the OS.

2.6.1 Kernel Mode

The kernel runs in kernel mode (unrestricted mode, god mode). All instructions, I/O operations, and
memory are allowed and accessible. There are two modes, kernel and user mode. User mode is limited
and has only a subset of the operations that kernel mode has. Some of the OS operates in user mode.

2.6.2 User Mode

For a user to access I/O operations, the user invokes a trap (aka makes a system call). A trap is a special
instruction that switches from user mode to kernel mode and pauses the application.

8



2.7 I/O

The kernel can do I/O in many ways

• CPU constantly asks I/O if it is done (busy wait)

• CPU asks if I/O is done, if not then CPU sleeps for a set amount of time and retries (busy wait with
sleep)

• CPU sleeps and is woken by an interrupt (interrupt)

2.8 Interrupts

A literal interruption of the CPU. The CPU suspends what it is doing to handle the interrupt and then
resumes it’s previous operation.

2.9 Direct Memory Access (DMA)

A piece of hardware used for bulk data movement between main memory and I/O. This is to bypass the
CPU and let the CPU perform more operations not for I/O. DMA acts as a buffer for the CPU to prevent
it from being overwhelmed by interrupt requests.

2.10 Interrupts vs. Traps

The source of interrupts are external while traps are internal. Interrupts are asynchronous while traps are
synchronous. Both put the CPU in kernel mode and both save the current state of the CPU.

2.11 Kernel Designs

• Monolithic: entire OS runs as a single program in kernel mode (faster but buggier)

• Micro: only essential components in kernel mode (slower but less buggy)

• Modular (hybrid): some components are in kernel mode, some aren’t

• Layered: components are organized into a hierarchy of layers

2.12 Virtual Machine

Abstract hardware of a single computer into several different execution environments. A hypervisor is the
software that runs VMs. Different versions of hypervisors are:

• Bare-metal: runs directly on hardware

• Hosted: runs on top of another OS

• Hybrid: runs on both top and directly of hardware

9



Chapter 3

Slide Set 3: System Calls and Processes

3.1 System Calls

Steps when a system call is called:

• Application issues system call

• OS switches from user mode to kernel mode

• OS saves application state

• OS does the requested operation

• OS switches back to user mode and restores application state

• Application resumes

Think of system calls as an API provided by the OS. System calls are minimalist and not very easy to
use. OSs often provide libraries for applications to use to access system calls. A library provides a set of
functions that are available to a programmer.

3.2 Processes

A process is a program in execution. It holds all of the info needed by the OS to run the program. It has
the following:

• Address space

• Set of resources

• PC, stack pointer, registers

• Process ID

Processes are allowed to create new processes. An orphaned process is a process that doesn’t have a parent
process. Orphaned processes are adopted by init. Two processes can communicate with each other via a
pipe. Pipes are accessed using file I/O APIs. Processes allow multitasking instead of idling while doing
I/O. It gives the illusion of parallelism. Each process gets:

• Address space

• Text section

10



• Data section

• Heap

• Stack

• PC

3.3 Program vs Processes

A program is a passive entity while a process is an active entity. A program becomes a process when it is
loaded into memory for execution. A program can have more than one process.

• fork(): create and run child process, a duplicate of parent.

• exec(): replace current process

• wait(NULL): wait for the child process to change states

fork() returns 0 in the child process and the pid of the child process in the parent. fork() creates and starts
a new processes.

3.4 Process Control Block (PCB)

Each process is represented in the OS by a PCB that includes:

• Process state

• Program counter

• CPU registers

• CPU scheduling

• Memory management info

• Accounting info

• I/O status info

The process table is a collection of all PCBs. In Linux, the PCB is called task struct. Some fields of the
PCB:

• Process Management

– Registers

– PC

– Stack pointer

– Process state

• Memory Management

– Pointer to (text/data/stack) segment

11



• File Management

– Root directory

– Working directory

– User/Group ID

3.5 Operations on Processes

Each process gets a pid which is a unique process identifier.

• fork(): process creation

• exit(); process termination

3.6 init

init is the first process started during the booting of the computer and is the ancestor of all user processes.
Has a pid of 1. System processes are not descendants of init. Orphaned processes are adopted by init.

12



Chapter 4

Slide Set 4: Processes and Threads

4.1 CPU Utilization

CPU Utilization = 1 − pn where p = fraction of processes’ time spent on I/O and n is the degree of
multiprogramming or the number of processes that are running at a time.

4.2 Process Creation

• init is created at boot time

• only existing processes can create new processes via fork()

• all processes are descendants of init

Each process has its own address space.

• Stack

13



• Heap

• Data

• Text

• PCB

4.3 Resource Allocation

• child obtains resource directly from OS

• child obtains portion of resources allocated to the parent

• child shares some/all resources with the parent

4.4 Process Termination

What causes a process to terminate?

• self termination

• exceptions

• errors

• killed by users

• normal exit (voluntary)

• error exit (voluntary)

• fatal error (involuntary)

• killed (involuntary)

When terminating a process, what happens in memory?

• free memory

• assign child process a new parent

• delete PCB

What about other resources?

• free all allocated resources

• remove processes from process table

Default behavior on Linux is to reparent the child process to the init process.

14



4.5 Process Scheduling

The objective is to maximize CPU utilization by having a process executing on the CPU at all times. The
process scheduler creates a scheduling queue:

• Job queue: all processes in the system

• Ready queue: processes in memory that are ready to be executed

• Device queue: processes waiting for a particular I/O device

4.6 Process States

• running (actually using the CPU at that instant)

• ready (runnable; temporarily stopped to let another process run)

• blocked (unable to run until some external event happens)

Logically, the first two states are similar. In both cases the process is willing to run, only in the second
one, there is temporarily no CPU available for it. The third state is fundamentally different from the first
two in that the process cannot run, even if the CPU is idle and has nothing else to do. Only 4 transition
allowed:

• Ready − > Running (scheduler)

• Running − > Ready (timeout)

• Running − > Blocked (blocking request)

• Blocked − > Ready (unblocking)

15



4.7 Context Switching

The switching of one process to another. Occurs in kernel mode. Time slice is the allocated amount of
time a process is given. When the OS switches between processes:

• OS saves state of the old process in PCB

• OS loads saved state of the next process from PCB

4.8 Thread

A thread is a process within a process. It is also a unit of execution of a process. A process is a program
in execution and a thread is a unit of execution of a process. Threads have individual registers, stack, PC,
and state.

4.9 Process vs Thread

Threads are mostly about improving performance. Processes are expensive while threads are cheap. Pro-
cesses are typically independent while threads exist as “subsets” of a process. Threads belong to the same
process and share many resources such as address space and open files. Processes only interact through
OS mechanisms while threads are more flexible. Processes have protected address spaces while threads do
not. Processes are used when the tasks are unrelated while threads are used when tasks are part of the
same job.

16



4.10 Why Threads

• Multiple activities within an application

• Lighter weight than processes

• Useful for parallel computing

4.11 Benefits of Threads

• Responsiveness: multiple actions at once

• Resource Sharing: share data

• Economy: more economical to create and switch

• Scalability: more tasks can be scheduled

• Ease of Use: alternatives are much more complicated

4.12 Why Threads are Lightweight than Processes

Process creation is ”expensive”, because it has to set up a complete new virtual memory space for the
process with it’s own address space. ”expensive” means takes a lot of CPU time. Threads don’t need to
do this, just change a few pointers around, so it’s much ”cheaper” than creating a process. The reason
threads don’t need this is because they run in the address space, and virtual memory of the parent process.

17



Every process must have at least one thread. So if you think about it, creating a process means cre-
ating the process AND creating a thread. Obviously, creating only a thread will take less time and work
by the computer.

In addition, threads are ”lightweight” because threads can interact without the need of inter-process
communication. Switching between threads is ”cheaper” than switching between processes (again, just
moving some pointers around). And inter-process communication requires more expensive communication
than threads.

4.13 User-Level Threads

Thread implementation is entirely in user space and requires no support from the OS. Each process has
its own thread table and scheduler. No need to trap into kernel when switching treads so efficient.

4.14 Kernel-Level Threads

One master thread table at kernel level. Better for processes doing a lot of blocking I/O. Less efficient
since thread operations need to trap into kernel.

4.15 Thread Models

• N:1 (many to one or user-level threads) many user-level threads to one kernel thread

• 1:1 (one to one or kernel-level threads) one user-level thread to one kernel thread

• M:N (many to many or hybrid threads) combination of the two above

18



Chapter 5

Slide Set 5: Concurrent Programming
(Thread Pools, Critical Sections, Mutexes,
Dining Philosophers)

5.1 Thread Cancellation

Asynchronous Cancellation

• one thread immediately terminates the target thread

• killed thread has no chance to clean up which may leave data in an undefined state

Deferred/Synchronous Cancellation

• the target thread periodically checks whether it should terminate

• check only at cancellation points at which it can be canceled safely

• less performance and may run for a while after cancellation request

5.2 Unix Signals

• a form of IPC (inter-process communication)

• asynchronous

• a signal is used to notify a process/thread that a particular event has occurred

• a signal must be generated/sent, delivered, and then handled via signal handler

5.3 Reentrant Functions

Reentrant functions are functions

• that can be interrupted in the middle of an operation

• and then called again (re-entered)

• and finally the original function call can finish executing

Used in interrupt handlers, signal handlers, multi-threaded applications. Don’t use global variables and
don’t call other non-reentrant functions. Similar to a leaf function in Assembly.

19



5.4 Thread Pools

The program creates and maintains a set/pool of worker threads. When a program needs a thread, it takes
one out of the pool, when it is done, the thread is back to the pool (thread recycling). Thread queues are
usually combined with a task queue. Instead of asking for a thread, a task is inserted into a task queue
and available threads take up tasks from the task queue.

5.5 Race Conditions

A race conditions is a behavior where the output is dependent on the sequence or timing of other uncon-
trollable events. We want to avoid race conditions:

• Prevent more than one process/thread from accessing a shared resource at any given time

• Identify critical sections in the code

• Enforce mutual exclusion

5.6 Critical Sections and Mutual Exclusion

A critical section is the part of the program that accesses the shared resource in a way that could lead to
races. Mutual exclusion is when no two processes/threads will ever be in their critical sections at the same
time. Requirements to avoid race conditions:

• No two processes may be inside their critical regions at the same time

• No assumptions about speed or the number of CPUs

• No process running outside it’s CS may block other processes

• No process should have to wait forever to enter its CS

Definitions

• Critical Section: part of the program where a shared resource is accessed

• Mutual Exclusion: ensuring only one process can access a resource at a time

• Mutex/Lock: a mechanism to achieve mutual exclusion

• Deadlock: a state where each process/thread is waiting on another process/thread to release a lock

• Livelock: states of the processes change but none are progressing

• Starvation: one process does not get to run at all

• Fairness: stronger requirement than starvation-free, all processes get equal opportunity to progress

• Random Timeout: a mechanism for preventing deadlocks by randomly timing out

5.7 Mutex (aka Lock)

A mutex is a synchronization mechanism for ensuring exclusive access to a resource in concurrent programs.
It has two states: locked and unlocked. Only the process/thread that locks the mutex can unlock it.

20



Chapter 6

Slide Set 6: Concurrent Programming
(More Synchronization Mechanisms)

6.1 Condition Variables

Another synchronization primitive that is useful for implementing critical sections containing loops waiting
for a condition. It is a variable that waits on a condition to be satisfied before unlocking/locking the thread.
It is useful for implementing CS containing loops waiting for a condition.

6.2 Semaphore

Another synchronization primitive that is a special integer variable used for signaling among processes.
The value indicates number of available units of some resource. Supports three operations:

• initialization

• increment

• decrement

6.2.1 Binary Semaphore

A special type of semaphore with value of either 0 or 1. When the binary semaphore is locked by a thread,
it can be unlocked by any thread as opposed to mutex, where locking/unlocking must be done by the same
thread. Each semaphore maintains a queue of processes blocked on the semaphore.

6.2.2 Counting Semaphore

A general semaphore where the value is not limited to 0 and 1 like the binary semaphore. If:

• S > 0: value of S is the number of processes/threads that can issue a wait and immediately continue
to execute

• S = 0: all resources are busy, the calling process/thread must wait

• S < 0: represents the number of processes that are waiting to be unblocked

A common problem with semaphores is that if a thread/process requests more resources than available,
the program can get into a deadlock, race condition, or other forms of unpredictable and irreproducible
behaviour.

21



6.3 Monitors

A monitor is a programming language construct that controls access to shared data. A monitor is also a
module that encapsulates

• Shared data structures

• Procedures that operate on the shared data structure

• Synchronization between concurrent procedure invocations

Data in monitors can only be accessed via the published procedures. A monitor is a higher-level construct
compared to mutexes and semaphores. Only one thread can execute any monitor procedure at any time.
Think of all bodies of all procedures being critical sections, protected by one mutex. Monitors with
condition variables are only accessible from within the module.

6.4 Monitors vs Semaphores vs Mutex

Once a monitor is correctly programmed, access to the protected resource is correct for accessing from all
processes. With semaphores or mutexes, resource access is correct only if all of the processes that access
the resource are programmed correctly.

6.5 Spinlocks

Another synchronization mechanism. Locks are implemented using busy waiting loops, a lightweight
alternative to mutex. Often implemented in Assembly using atomic operations.
Atomic Operation: an operation that appears to execute instantaneously

6.6 Compare-and-Swap(CAS)

Another synchronization mechanism. The general algorithm

• compare contents of memory to value 1

• if they are the same, change the memory to value 2

• return the old contents of memory

6.7 More Synchronization Mechanisms

Event Flags: a memory word where different event may be associated with each bit in a flag
Message Passing: processes send each other messages that can contain arbitrary data

6.8 Priority Inversion

The situation where a processes may have higher priority but has to wait for lower priority processes to
finish, effectively making the priority inverted. The solution is to use priority-inheritance where if a higher
priority item wants to use a resource, it gets to immediately.

22



Chapter 7

Slide Set 7: Other Synchronization
Mechanisms & CPU Scheduling

7.1 Good Race-Free Solution

Recall that a good solution satisfies the following four requirements:

• Mutual Exclusion: No two processes/threads may be simultaneously inside their critical sections
(CS).

• Progress: No process/threads running outside its CS may block other processes/threads.

• Bounded Waiting: No process/thread should have to wait forever to enter its CS.

• Speed: No assumptions may be made about the speed or the number of CPUs.

7.2 Achieving Mutual Exclusion

7.2.1 Disabling Interrupts

The idea is for each process to disable all interrupts just before entering its CS and re-enabling them
just before leaving the CS. Once a process has disabled interrupts, it can examine and update the shared
memory without interventions from other processes.

The problem is that a process may never re-enable the interrupt or that on multi-CPU system, disabling
interrupts only affects one CPU.

7.2.2 Lock Variables

The idea is a single, shared (lock) variable, initialized to 0. If lock == 0 then no process is in CS. If lock
== 1 then a process is in CS. A process can only enter its CS if lock == 0. Otherwise, it must wait.

The problem is that there is no mutual exclusion. The solution is to make entering the CS an atomic
operation.

23



7.2.3 Strict Alternation

The idea is that two processes alternate between entering their CS using a global variable turn.

The problem is that:

• Busy Waiting (process is busy checking the condition while waiting for the condition to change)

• Only works for 2 processes

• No progress (one process is blocked by another process not in its CS)

7.2.4 Peterson’s Algorithm

The idea is that there is a shared integer turn and shared array flag[2] indicating whose turn it is and who
is interested in entering CS. It satisfies mutual exclusion, progress, and bounded waiting.

The problem is that it may fail on some CPUs with out-of-order execution or memory reordering.

7.2.5 Synchronization Hardware

Race conditions are prevented by ensuring that critical sections are protected by locks.

• A process must acquire a lock before entering a CS.

• A process releases the lock when it exits the CS.

Many modern computer systems provide special hardware instructions that implement useful atomic op-
erations that can be used to create atomic locking/unlocking mechanisms.
Advantages

• Avoids system calls

• Can be more efficient if expected wait time is short

• Only makes sense on multi-CPU/core systems

Disadvantages

• Busy-waiting (spinlocks)

• Extra coding

7.2.6 Compare-and-Swap (CAS)

General Algorithm

• Compare contents of memory to value1

• If they are the same, change the memory to value2

• Return the old contents of memory

Pseudo-code:

24



1 int case(int* mem , int val1 , int val2)

2 {

3 int old = *mem;

4 if (old == val1)

5 {

6 *mem = val2;

7 }

8 return old;

9 }

7.2.7 Test-and-Set

General Algorithm

• Remember contents of memory (atomic)

• Set memory to true (atomic)

• Return the old contents of memory

Pseudo-code:

1 int testAndSet(int* mem)

2 {

3 int old = *mem;

4 *mem = TRUE;

5 return old;

6 }

7.2.8 Swap

General Algorithm

• Atomically swap contents of two memory locations

Pseudo-code:

1 void swap(int* a, int* b)

2 {

3 int tmp = *a;

4 *a = *b;

5 *b = temp;

6 }

7.2.9 Bounded Waiting with Synchronization Hardware

• When used correctly, the atomic operations, such as compare-and-swap, test-and-set, swap can be
used to achieve mutual exclusion, progress, and speed

• But too low level to achieve bounded waiting

• Bounded waiting can be ‘added’ via two shared variables such as a lock

25



7.3 CPU Scheduling

Recall multi-programming, the main objective is:

• Maximize CPU utilization by having a process running at all times

• Several processes kept in memory

• A process runs until it must wait

The software the decides which process runs next is called a scheduler that is usually part of a kernel.

7.4 Process Behavior

Most processes alternate between bursts of CPU activity and bursts of I/O activity. As CPUs get faster,
processes tend to get more I/O-bound. It takes quite a few I/O-bound processes to keep the CPU fully
occupied.

• CPU-Bound: long CPU bursts and infrequent I/O waits

• I/O-Bound: short CPU bursts and frequent I/O waits

7.5 When to Schedule

Variety of situations when scheduling is needed:

• Process creation

• Process termination

• Blocking system call (I/O or mutex)

• I/O interrupt

• Periodic clock interrupt (time slice)

Scheduling Algorithms

• Non-preemptive: process runs until it does I/O, exits or voluntarily yields CPU

26



• Preemptive: processes are swapped at regular intervals (time slice) or kicked out when a condition
is satisfied

Note: On systems without clock interrupt, only non-preemptive scheduling is possible.

7.6 Categories of Scheduling Algorithms

Batch

• Usually on mainframes

• HPC systems

• No interactivity needed

• No preemption needed

Interactive

• General systems: running many tasks, many of them must remain interactive

Real Time

• Applications are guaranteed CPU cycles

• Often tied closely to some hardware (planes, cars, gaming)

7.7 Scheduling Metrics

Individual Statistics

• Arrival Time: the time a process arrives

• Start Time: the time a process first gets to run on the CPU

• Finish Time: when the process is done

• Response Time: how long before you get first feedback (often response = start - arrival)

• Turnaround Time: time taken to fulfill a request (turnaround = finish - arrival)

• CPU Time: how much time the process spent on CPU

• Waiting Time: total time spent in waiting queue (waiting = turnaround - CPU - I/O)

Overall Statistics

• Average turnaround time: average of the turnaround time

• Average wait time: average of the wait time

• Throughput: number of jobs finished per unit of time

27



7.8 Scheduling Algorithms

7.8.1 First Come First Serve (FCFS)

• Non-preemptive

• CPU is assigned in the order the processes request it using a FIFO ready queue

• New jobs are appended to the ready queue

• A running job keeps the CPU until it is either finished or it blocks

• When a running process blocks, next process from the ready queue starts to execute

• When a process is unblocked, it is appended at the end of the ready queue

• The minimum number of context switches is only N switches for N processes

Disadvantage of FCFS is the convoy effect where a CPU-bound process will tie up the CPU, making I/O-
bound processes wait a long time to execute.

7.8.2 Round Robin (RR)

• Preemptive version of FCFS

• Each process is assigned a time interval called a time slice/quantum

• If the process exceeds the quantum, the process is preempted (context switched), and the CPU is
given to the next process in ready queue

• Preempted process goes at the back of the ready queue

28



The performance of RR depends significantly on the size of the time quantum (Q) and the time required
for a context switch (S).

• Very small Q implies heavy overhead but a highly responsive system.

• Very large Q implies minimum overhead but a non-responsive system.

Conclusion: Although Q should be large compared to S, it should not be too large.

7.8.3 Shortest Job First (SJF)

• Non-preemptive

• Applicable to batch systems where job length is known in advance

• When the CPU is available it is assigned to the shortest job

• Ties are resolved using FCFS

• SJF is similar to FCFS but the ready queue is sorted with the shortest job

• Sorting can be either basic (execution time can be static) or advance (dynamically compute based
on the history of CPU bursts)

Advantages

• Minimum number of context switches

• Optimal turnaround time if all jobs arrive simultaneously

Disadvantages

• Requires advance knowledge of how long a job will execute

29



• Has potential for job starvation (solved by aging)

• Aging: priority = total wait time / estimated run time

7.8.4 Shortest Remaining Time Next (SRTN)

• Preemptive version of SJF

• The next job is picked based on the remaining time

• Remaining time = total time - time already spent on CPU

• SRTN is similar to RR

• The ready queue is sorted by the remaining time

• Context switches can happen as a result of adding a job

Advantages

• Similar to SJF

• Optimal turnaround time even if jobs don’t arrive at the same time

• Slightly more context switches

Disadvantages

• Requires advance knowledge of how long a job will execute

• Has potential for job starvation (solved by aging)

30



• Needs to consider the cost of a context switch

31



Chapter 8

Slide Set 8: CPU Scheduling

8.1 Operation Environments

32



8.2 Scheduling Algorithm Goals

These statistics can reference average, minimum, or maximum.

8.3 Preemptive Terminology

33



8.4 CPU Scheduling on Batch Systems

Already covered in previous slide set. Many of these ideas can be adapted to interactive and even real-time
systems.

• FCFS

• RR

• SJF

• SRTN

8.5 CPU Scheduling on Interactive Systems

• RR

• Shortest-process-next

• Fair-share

• Priority

– Lottery

– Multilevel-queues

– Multilevel feedback queues

8.5.1 Shortest-Process-Next

Very similar to SJF scheduling where a ready queue is sorted by a predicted next CPU burst and uses
time-sharing preemption. The prediction is done using exponential averaging.

P = a ∗B + (1− a) ∗ P ′

• P = new prediction of how much a process’ burst will be

• P’ = previous prediction

• a = smoothing factor (commonly set to 0.5)

• B = burst time

8.5.2 Fair-Share

A scheduling algorithm that takes into account the owners of the processes. It’s used to ensure that all
users of a system get a fair share of the CPU by allocating the CPU among users/groups instead of pro-
cesses. All processes belonging to an owner have to share the owner’s CPU share.

34



8.5.3 Priority

A scheduling algorithm that can schedule processes with different priorities. Important processes should
get more CPU time than less important processes. Priorities can be either static or dynamic.

Implementing Priority Scheduling

With non-preemptive scheduling

• Consider SJF-like scheduling where ready queue is sorted by priority

• All jobs would eventually finish

• Although adding a new job with a very high priority might have to wait

With preemptive scheduling (more complicated)

• Consider RR-like scheduling where ready queue is sorted by priority

• Problem is starvation where a high priority CPU-bound process would ensure that no other process
gets to run

8.5.4 Multilevel Queues

A preemptive time sharing scheduling algorithm. The ready queue is partitioned into separate queues to
separate processes based on their priority (foreground vs background) and each queue can have a different
scheduling algorithm. A process is permanently assigned to a queue.

35



Option 1: Static Priority Scheduling

• Each queue has a different but fixed priority

• The scheduler moves from the highest priority queue down

• Once a queue is empty, the scheduler moved to the next queue

• Starvation is a problem

Option 2: Each Queue Gets a Fixed CPU Share

• E.g. Higher priority queue gets 80% CPU time while the lower queues get 20%

• Not a very dynamic solution

8.5.5 Multilevel Feedback Queues

Similar to multilevel queues but processes can move between queues (move up by aging, down by expiring
time slice). This scheduling algorithm solves the starvation problem and dynamic allocation of resources
problem. Quantum is the time allocated to each process in a queue. If a process uses up the time slice,
then it is moved down to a lower queue. If a process has been waiting for a long time to run in a lower
queue, then it is moved up to a higher queue.

8.5.6 Lottery (Probabilistic)

Another preemptive time sharing algorithm. Each process gets some random number of ”lottery tickets”
where the number of tickets determine the process’ priority (higher priority→ more tickets). The scheduler
picks a random number and the process with that number wins time slice of CPU (With more tickets, higher
probability of being picked). In the long run, a job’s priority will determine the job’s total CPU share.
Starvation is not a problem because all processes have a ticket and it is possible to pick it. However, there
are some technical problems of implementing this scheduling algorithm for a large number of processes,
tickets, jobs. Also, there is overhead and time spent on random selection of a process to run.

36



8.6 CPU Scheduling on Real-Time Systems

8.6.1 Rate-Monotonic (RM)

An algorithm that is suited for periodic tasks. The priority is calculated by inverting the period of the
task (shorter period = higher priority, longer period = lower priority). Usually preemptive (higher priority
task will preempt lower priority task). A simple formula can be used to determine whether a set of tasks
is schedulable. The disadvantage of this method is when tasks are aperiodic.

8.6.2 Earliest-Deadline-First (EDF)

Similar to RM except the priority is calculated differently. The priority is calculated by using the deadline
instead of the time the task takes. Usually a preemptive scheduler. A simple formula can determine
whether tasks can be scheduled without missing deadlines.

8.7 Thread Scheduling

8.7.1 User-Level Threads

• Kernel assigns a quantum to process

• Threads within the process share the quantum

• Each process has its own thread scheduler

• No clock to interrupt a thread that runs too long

• Very fast context switch

• Not possible to allow other threads from other processes to run during a process’ thread execution

37



8.7.2 Kernel-Level Threads

• Kernel assigns a quantum to threads

• A full context switch is required

• A thread blocking on I/O will not suspend the entire process

• Threads from other processes may run between current process’ threads

8.8 Other Schedulers

• Long-term: Decides which programs to run and which ones to delay

• Medium-term: Decides which programs to swap in/out when running low on resources or when a
process is idle for too long

• Short-term: Responsible for allocating CPU to processes in memory

• I/O: Ordering in the I/O queue to increase throughput

8.9 Recap

38



Chapter 9

Slide Set 9: Deadlocks

9.1 Definition

A set of processes is deadlocked if:

• Each process in the set is waiting for an event (resource becoming available, mutex, message arriving)

• That event can be caused only be another process in the set

9.2 System Model

A system consists of processes and resources. There are n processes (P1, P2, ..., Pn) and m resource types
(R1, R2, ..., Rm). The resources could be CPU, memory space, I/O devices. Each resource type, Ri, has
Wi instances such as 1 CPU, 5 disks, and 3 printers.
Each process utilizes a resource follows in the same manner:

• Request a resource - may block

• Use a resource - for a finite amount of time

• Release a resource - potentially unblock related process

9.3 Necessary Deadlock Conditions

The following four conditions must hold simultaneously.

• Mutual Exclusion: The involved resources must be non-shareable

• Hold and Wait: A process holding at least one resource is waiting to acquire additional resources

• No Preemption: A resource can be released only by the process holding it (voluntary)

• Circular Wait: There is an ordering of processes such that there is a cycle (P1 waits for P2, P2
waits for P3, P3 waits for P1)

39



9.4 Resource Allocation Graph

• A set of vertices V and a set of edges E.

• Vertices are partitioned into 2 types:

– P = P1, P2, ..., Pn, the set consisting of all the processes in the system

– R = R1, R2, ..., Rn, the set consisting of all resource types in the system

• Request edge - directed edge from process to resource (Pi → Rj)

• Assignment edge - directed edge from resource to process (Rj → Pi)

40



• No cycle in the graph → No deadlock

• No deadlock → No cycle

• Deadlock → Cycle

• Cycle 6→ Deadlock

The operation order does affect if a system will go into deadlock.

9.5 Basic Facts

• If a graph contains no cycles → no deadlock

• If a graph contains a cycle →

– If only one instance per resource type then guaranteed deadlock

– If multiple instances per resource type then possible deadlock

9.6 Methods for Dealing with Deadlocks

Ignore

• Pretend that deadlocks never occur in the system

• Up to applications to address their deadlock issues

Prevention and Avoidance

• Ensure that a system will never enter a deadlock state

41



• They are different

Recover

• Allows system to enter deadlock and then recover

• Requires deadlock detection and recovery

9.7 Deadlock Prevention

A set of algorithms that removes one of the 4 necessary conditions for deadlock.

9.7.1 Avoid Mutual Exclusion

• Not required for shareable resources

• Required for non-shareable resources

9.7.2 Avoid Hold and Wait

• Must guarantee that whenever a process requests a resource, it does not hold any other resource

9.7.3 Avoid No Preemption

• Allow preemption

• If a process (holding some resource) requests another resource, have the process release all of it’s
currently held resources

9.7.4 Avoid Circular Wait

• Impose an ordering of all resource types and require that each process requests resources in an
increasing order of enumeration

9.8 Deadlock Avoidance

• Can lead to low resource utilization

• Can increase resource utilization if some a priori (known before) information is available

• Have each process declare the maximum number of resources of each type that it may need. Then
use an algorithm to ensure that there can never be a circular wait condition

9.8.1 Safe State

A system is in safe state if there exists a sequence of all running processes in the system where they can
all finish without deadlock. If a system is in a safe state then no deadlocks are possible, if a system is not
in a safe state then there is a possibility of deadlock.

42



9.8.2 Deadlock Avoidance Algorithms

Single instance per resource type

• Use resource-allocation graph algorithm

Multiple instance per resource type

• Use banker’s algorithm

Single Instance: Resource-Allocation Graph Algorithm

Suppose that a process requests a resource, then the request can be granted only if allowing the request
will not violate safe state. E.g. Converting the request edge to an assignment edge does not result in the
formation of a cycle.

Multiple Instances: Banker’s Algorithm

A more general avoidance algorithm than the resource-allocation graph that works with multiple instances
per resource type.

• Available: the number of instances of resource type are available

• Max: the maximum instances of a resource type that the process can request

• Allocation: the current resource instances held by the process

• Need: the number of resource type instances that a process currently requires to execute (max =
allocation)

The following is the steps for the algorithm.

• Check if request > need (Hey! You’re asking more than you said you needed!)

• Check if request > available (Not enough resource for the request)

• Suppose the request was granted

• Then check if state is still safe

• Continue allocating resource until all processes are either finished or some of the processes cannot
run

• If all finished, then grant request, else do not grant request

9.9 Deadlock Detection

9.9.1 Detection Algorithm

Detection algorithms are often expensive since you have to spend too many CPU cycles on useless work.

• Single instance per resource type

• Multiple instances per resource type

43



Single Instance

• Maintain a wait-for graph

• Nodes are processes

• Pi → Pj If Pi is waiting for Pj

• Uses a collapsed resource-allocation graph that does not show the resources but rather which process
is waiting on who

• If there is a cycle, there exists a deadlock

Multiple Instances

Pretty much the same as the Banker’s algorithm.

9.10 Deadlock Recovery

Works regardless of the number of instances per resource type.

9.10.1 Process Termination

Options

• Abort all deadlocked process

• Abort one process at a time until the deadlock cycle is eliminated (how to decide which one to abort?)

9.10.2 Process Rollback

Similar to termination but

• Programs can cooperate

• Use checkpoints to save current state or rollback

• Useful for long computations/simulations

9.10.3 Resource Preemption

Steps

• Pick a victim process

• Suspend victim process

• Save state of victim’s process

• Give victim’s resources to other deadlocked processes

• When the other processes release the resources, restore their state

• Return resources to the victim

• Resume the victim

44



Chapter 10

Slide Set 10: Memory

10.1 Addresses

Use to find processes in memory.

10.1.1 Physical Addresses

Not a good idea to work with physical addresses. Protection is a problem for jump/branch instructions.

10.1.2 Logical Addresses

Logical addresses are not real addresses but virtual addresses. Used so programs can see one contiguous
space of memory but is really split across physical memory.

10.2 Binding of Instructions

When programs are written, the physical address space of the process is not known. Thus programs could
be expressed in a way that allows them to be relocated or when needed, have the address bind to the
actual memory location. The binding of instructions and data can happen at three different stages:

• Compile Time

• Load Time

• Execution Time

10.3 Memory-Management Unit

The hardware device that maps logical/virtual addresses to physical addresses.

10.4 Swapping

Processes can be swapped temporarily out of memory to a backing store and then brought back into
memory. The backing store is a fast disk large enough to hold processes. Swapping allows the OS to run
more processes than the available physical memory (RAM).

45



10.5 Memory Allocation

Deals with the issue of how much memory to give each process. The approaches can lead to fragmentation
where there are lots of tiny, free chunks of memory but none of them can satisfy any request. The solution
comes in two approaches.

10.5.1 Fixed Partitioning

Memory is divided into equal sized partitions that do not change. The problem is that this can lead to
internal fragmentation where memory internal to a partition becomes fragmented.

10.5.2 Dynamic Partitioning

Memory is divided into partitions that fit the request perfectly. The problem is that this can lead to
external fragmentation where memory external to all partition becomes fragmented.

10.6 Implementation

How do we keep track of free and allocated memory? Use the following data structures.

10.6.1 Bitmaps & Fixed Partitions

Memory is fixed partitioned. OS maintains a bitmap where 0 = free and 1 = used.

10.6.2 Linked List

Memory is dynamically partitioned. OS maintains a list of allocated and free memory using a linked list.

10.7 Memory Allocation Algorithms

• First Fit: find the first hole that is big enough, leftover space becomes new hole

• Best Fit: find the smallest hole that is big enough, leftover space becomes new hole (but very likely
useless)

• Next Fit: same as first fit, but start searching at the location of last placement

• Worst Fit: find the largest hole, leftover space is likely to be usable

• Quick Fit: maintain separate lists for common request sizes

10.8 Virtual Memory

Virtual memory is a memory management technique that allows the OS to present a process with logical
address space that appears contiguous. However, the physical address space can be discontiguous.

46



10.9 Paging

Virtual address space is divided into pages, physical address space is divided into frames. Pages and frames
are the same size. Pages map to frames via a lookup table called a page table. This method avoid external
fragmentation since there are no holes. Each process has its own page table.
If a program tries to access a page that does not map to a physical memory address, it is called a page
fault.

10.10 Demand Paging Performance

Use this formula to calculate the effective access time (EAT).

EAT = (1− p) ∗ma + p ∗ pfst

where

• EAT = effective access time

• p = probability of page fault

• ma = memory access time

• pfst = page fault service time

10.11 Address Translation

• Page Number: Used as an index into a page table which contains base address of corresponding
frame in physical memory

• Page Offset: Combined with base address to define the physical memory address that is sent to the
memory unit

10.12 Memory Protection

Use a protection bit. Use valid/invalid bit (dirty bit).

47



Chapter 11

Slide Set 11: Paging

11.1 Shared Pages

11.2 Page Fault Handling

11.2.1 Belady’s Anomaly

11.3 Page Table Implementations

11.4 Hardware

48



11.4.1 Translation Look-Aside Buffers (TLBs)

•

11.4.2 Simple

11.4.3 Hierarchical

11.4.4 Inverted

11.4.5 Hashed IPT

11.5 Page Replacement Algorithms

11.5.1 First-In-First-Out

11.5.2 Optimal

11.5.3 Least Recently Used

11.5.4 CLOCK Replacement

11.6 Thrashing

If a process does not have access to a sufficient number of memory pages, a futile, repetitive swapping
condition known as ”thrashing” often arises, and the page fault rate typically becomes high. This frequently
leads to high, runaway CPU utilization that can grind the system to a halt.

49



50



11.7 Copy on Write

51



Chapter 12

Slide Set 11: Input/Output

12.1 Disk Structure

A head crash is when the read/write head makes contact with the disk surface, causing permanent damage
to the disk. In decreasing size:

• Hard Drive

• Platter

• Cylinder

• Track

• Sector

52



12.1.1 Mapping

A logical block is the smallest unit of transfer between the disk and memory. Mapping is the converting
of logical block numbers into physical disk address that consists of a cylinder number, a head number, and
a sector number.

12.2 Disk Scheduling

The time required for reading/writing a disk block is determined by 3 factors:

• Seek Time: the time to move the arm to the correct cylinder

• Rotational Delay: the time for the correct sector to rotate under the head

• Disk Bandwidth: the time to actually transfer data

12.2.1 FCFS

The first request to enter is accessed.

12.2.2 SSTF

The request with the least seek time from the current head position is accessed. This scheduling could
lead to starvation among requests.

12.2.3 SCAN

The head continuously scans back and forth across the disk and serves the requests as it reaches each
cylinder

12.2.4 C-SCAN

Same as SCAN in one direction, but when reaching last cylinder, head returns to 1st cylinder

12.2.5 C-LOOK

Small optimization of C-SCAN, head only goes as far as needed by the next request and not to the end of
the cylinder.

12.3 RAID

RAID stands for “redundant array of inexpensive disks.”

• RAID 0: Split data across all disks

• RAID 1: Copy data across all disks

• RAID 5: Data is distributed with 1 parity strip per disk

• RAID 6: Data is distributed with 2 parity strips per disk

• RAID 10: A combination of RAID 0 and RAID 1

53



12.4 I/O Hardware

Block Devices

• Store information in fixed-size blocks

• Hard disk

• USB

• DVD

Character Devices

• Delivers/accepts a stream of characters without regard to block structure

• Printer

• Keyboard

• Mouse

Other Devices

• Clock/Timers

54



Chapter 13

Slide Set 12: File Systems

•

55


	Slide Set 1: Administrative and Introduction
	Main Topics
	What is an Operating System?
	Important Concepts
	Multiprogramming

	Slide Set 2: Hardware, Booting, Interrupts, and VMs
	CPU
	Caches
	Memoization
	Hardware Review - I/O
	Booting
	Kernel
	Kernel Mode
	User Mode

	I/O
	Interrupts
	Direct Memory Access (DMA)
	Interrupts vs. Traps
	Kernel Designs
	Virtual Machine

	Slide Set 3: System Calls and Processes
	System Calls
	Processes
	Program vs Processes
	Process Control Block (PCB)
	Operations on Processes
	init

	Slide Set 4: Processes and Threads
	CPU Utilization
	Process Creation
	Resource Allocation
	Process Termination
	Process Scheduling
	Process States
	Context Switching
	Thread
	Process vs Thread
	Why Threads
	Benefits of Threads
	Why Threads are Lightweight than Processes
	User-Level Threads
	Kernel-Level Threads
	Thread Models

	Slide Set 5: Concurrent Programming (Thread Pools, Critical Sections, Mutexes, Dining Philosophers)
	Thread Cancellation
	Unix Signals
	Reentrant Functions
	Thread Pools
	Race Conditions
	Critical Sections and Mutual Exclusion
	Mutex (aka Lock)

	Slide Set 6: Concurrent Programming (More Synchronization Mechanisms)
	Condition Variables
	Semaphore
	Binary Semaphore
	Counting Semaphore

	Monitors
	Monitors vs Semaphores vs Mutex
	Spinlocks
	Compare-and-Swap(CAS)
	More Synchronization Mechanisms
	Priority Inversion

	Slide Set 7: Other Synchronization Mechanisms & CPU Scheduling
	Good Race-Free Solution
	Achieving Mutual Exclusion
	Disabling Interrupts
	Lock Variables
	Strict Alternation
	Peterson's Algorithm
	Synchronization Hardware
	Compare-and-Swap (CAS)
	Test-and-Set
	Swap
	Bounded Waiting with Synchronization Hardware

	CPU Scheduling
	Process Behavior
	When to Schedule
	Categories of Scheduling Algorithms
	Scheduling Metrics
	Scheduling Algorithms
	First Come First Serve (FCFS)
	Round Robin (RR)
	Shortest Job First (SJF)
	Shortest Remaining Time Next (SRTN)


	Slide Set 8: CPU Scheduling
	Operation Environments
	Scheduling Algorithm Goals
	Preemptive Terminology
	CPU Scheduling on Batch Systems
	CPU Scheduling on Interactive Systems
	Shortest-Process-Next
	Fair-Share
	Priority
	Multilevel Queues
	Multilevel Feedback Queues
	Lottery (Probabilistic)

	CPU Scheduling on Real-Time Systems
	Rate-Monotonic (RM)
	Earliest-Deadline-First (EDF)

	Thread Scheduling
	User-Level Threads
	Kernel-Level Threads

	Other Schedulers
	Recap

	Slide Set 9: Deadlocks
	Definition
	System Model
	Necessary Deadlock Conditions
	Resource Allocation Graph
	Basic Facts
	Methods for Dealing with Deadlocks
	Deadlock Prevention
	Avoid Mutual Exclusion
	Avoid Hold and Wait
	Avoid No Preemption
	Avoid Circular Wait

	Deadlock Avoidance
	Safe State
	Deadlock Avoidance Algorithms

	Deadlock Detection
	Detection Algorithm

	Deadlock Recovery
	Process Termination
	Process Rollback
	Resource Preemption


	Slide Set 10: Memory
	Addresses
	Physical Addresses
	Logical Addresses

	Binding of Instructions
	Memory-Management Unit
	Swapping
	Memory Allocation
	Fixed Partitioning
	Dynamic Partitioning

	Implementation
	Bitmaps & Fixed Partitions
	Linked List

	Memory Allocation Algorithms
	Virtual Memory
	Paging
	Demand Paging Performance
	Address Translation
	Memory Protection

	Slide Set 11: Paging
	Shared Pages
	Page Fault Handling
	Belady's Anomaly

	Page Table Implementations
	Hardware
	Translation Look-Aside Buffers (TLBs)
	Simple
	Hierarchical
	Inverted
	Hashed IPT

	Page Replacement Algorithms
	First-In-First-Out
	Optimal
	Least Recently Used
	CLOCK Replacement

	Thrashing
	Copy on Write

	Slide Set 11: Input/Output
	Disk Structure
	Mapping

	Disk Scheduling
	FCFS
	SSTF
	SCAN
	C-SCAN
	C-LOOK

	RAID
	I/O Hardware

	Slide Set 12: File Systems

