SENG 471 Notes

Brian Pho

April 18, 2018

Contents

1	Introduction	2
2	Requirements	3
3	Requirements Specification	4
4	Formal Inspection	6
5	Feasibility Study	7
6	Stakeholder's Goals	8
7	Requirements Elicitation	9
8	Scoping the Problem	11
9	Modeling Requirements	12
10	Modeling Enterprises	13
11	Midterm	14
12	Modelling Functions - Relationships	15
13		16

Introduction

- Requirements: goals, functionalities, qualities and constraints met by the system
- Requirements Engineering (RE) deals with the elicitation, analysis, and evolution of the requirements that need to be achieved by a software system within an organizational (or physical) environment.
- Requirements Elicitation: is a set of activities to identify and communicate the purpose of a software system and the contexts in which it will be used.
- RE Process: Information Sources → Elicitation → Elicitation Notes and Constraints → Analysis → Requirements Document (+ Elicitation Notes and Constraints) → Specification → Specification Document
- RE Questions
 - Which problem needs to be solved?
 - Where is the problem?
 - Whose problem is it?
 - Why does it need solving?
 - How might a software system help?
 - When does it need solving?
 - What might prevent from solving it?
- Stakeholder: an individual, group of people, organization or other entity that has a direct or indirect interest in a system
- Quality: fitness for purpose or conformance to requirements
- Why RE? Cost, time, resources, meeting expectations

Requirements

- Enterprise Requirements \rightarrow Why?
- Functional Requirements \rightarrow What?
- Non-Functional Requirements \rightarrow How?
- User Requirements \rightarrow Who?
- Requirement vs Specification: requirements are what your program should do, the specifications are how you plan to do it. (what vs how)
- WRSPM Model: specifications bridge the application domain and the machine domain.
- Application Domain vs Machine Domain
- Application Domain (things the machine cannot observe)

D = Domain Properties

R = Requirements

• Machine Domain (things private to the machine)

C = Computers

P = Programs

• Both (shared things)

S = Specification

• Verification (Are we building the system right?)

S and D entail R?

P on C satisfies S?

• Validation (Are we building the right system?)

Got all important requirements?

Got all the relevant domain properties?

• Link for Comparison

Requirements Specification

- Software Requirements Specification (SRS): document used to communicate to a stakeholder
- Considerations
 - Valid
 - Unambiguous
 - Complete
 - Understandable
 - Consistent
 - Verifiable
 - Modifiable
 - Traceable
- Contents
 - Functionality: what
 - Attributes: considerations
 - Constraints: assumptions/standards
 - External Interfaces: users, SW, HW
 - Performance: criteria
- Should Not Include
 - Development plans
 - Assurance plans
 - Designs
- Typical Mistakes
 - Noise: irrelevant information
 - Silence nondescript feature

- Over-specification: solutions rather than the problem
- Contradiction: incompatible definitions
- Ambiguity: multiple interpretations
- Forward reference: term used prior to its definition
- Wishful thinking: features cannot be validated
- Jigsaw puzzles: info scattered

• Audience

- Client/user
- You/Analysts/SRE
- You/Developer/Manager/QA
- Lawyers/Court

Formal Inspection

- Inspection Process
 - 1. **Planning**: choose reviewers and their roles (leader, recorder, reader, inspector, etc.)
 - 2. Overview: inspection objectives such as scope and criteria
 - 3. Preparation: individual inspection, typo log, focus on criteria
 - 4. **Inspection Meeting**: identify/record problems, meeting structure (checklist, walk through, round robin, speed review)
 - 5. Rework: address all problems
 - 6. Follow-up: corrections
- Constraints
 - Size
 - Duration
 - Outputs
 - Scope
 - Timing
 - Purpose

Feasibility Study

- Look at alternatives
- Content
 - Organization of a system
 - Problems with the present system
 - Goals for the new system
 - Constraints
 - Possible alternatives
 - Things to conclude
- Types
 - Technical (possible with current tech, compatible, practical)
 - Operational (urgency, ethics, issues, PIECES)
 - Schedule (time frame, deadlines)
 - Economic (Resources, benefits, costs, developmental costs, operational costs)
- Cost-Benefit Analysis: Net Present Value, Return on Investment, Break Even Point
- Comparing Alternatives: candidate systems matrix

Stakeholder's Goals

- Part of requirements elicitation
- Identify stakeholders
 - Organization chart
 - Authority level
- Focus on "why?" to derive goals
- "Why" \rightarrow higher goals
- "How" \rightarrow lower goals
- "How else" \rightarrow alternatives
- Scenarios \rightarrow Specific sequence of interactions
- Goal Modeling
 - Hard goals \rightarrow Must be carried out
 - Soft goals \rightarrow Difficult to be fully satisfied
- Use multiple sources if possible
- Associate stakeholders with each goal
- Use scenarios
- Explicit consideration of obstacles

Requirements Elicitation

- Elicit information relevant to developing a system
- Elicitation Techniques
 - Existing documents/data
 - Interviews/questionnaires
 - Group techniques/observation
- Sources of Information
 - People
 - Existing systems/products
 - Documentation
- Challenges
 - Thin spread of domain knowledge
 - Difficult to verbalize knowledge
 - Limited observability
 - Bias
- Techniques
 - Traditional
 - Collaborative
 - Contextual
 - Cognitive
- Traditional
 - Introspection: imagines what kind of system is required
 - Background reading: read reports, charts, manuals, documentation
 - Analyze hard data: look at numbers

- Interviews: asking for opinions, structured vs open-ended
- Questionnaires: collect data from a large number of people

• Collaborative

- Brainstorming
- Joint/Rapid Application Development (JAD/RAD): WYSIWYG documentation

• Contextual

- Participant observation
- Cognitive

Scoping the Problem

- How to stop looking for bigger problems to solve?
- How to stop from computerizing everything?
- Analysis
 - What are the problems?
 - What are the alternatives?
 - What are the selection criteria?
 - What recommendation would you make?

Modeling Requirements

- Model: an abstraction of something for the purpose of understanding it before building it
- Model: a number of views that can be static/dynamic
- Modeling Purpose
 - Guide elicitation
 - Provide a measure
 - Uncover problems
 - Check understanding
- Choice of Notation
 - Natural language
 - Semi-formal
 - Formal
- Desired characteristics of Modeling
 - Implementation independent
 - Abstraction
 - Formality
 - Constructability
 - Ease of Analysis
 - Traceability
 - Execution
- Techniques
 - Modeling enterprises
 - Modeling information + behavior
 - Modeling system qualities

Modeling Enterprises

- Business Processes and Analysis
 - What are business processes?
 - Why model business processes?
 - Examine current process and identify what needs to be changed
 - Compare analyses using table of cost, risk, potential
- Business Process Modeling Notation (BPMN) diagram: activity diagram from UML
- Diagram Guidelines
 - Have initial and final event
 - Read from top-left to bottom-right
 - Each activity has at least one transition into it and at least one transition out of it
 - Is decidable
 - Each fork has a corresponding join

Midterm

- No multiple choice
- 4 Questions
- Up to today's (Monday, Feb 26) lecture material
- Better bring calculators
- Not going to deduct marks for cardinalities

Modelling Functions - Relationships

• State Machine diagram: square brackets are guards, normal transitions are actions

•