ENSF 480 Notes

Brian Pho

October 11, 2017

Contents

1 Review
1.1 Object Oriented Programming

1.2 Relationships
2 Object Modeling

2.1 Introduction

2.2 Classes and Objects e

2.3 Interaction (Sequence) Diagram

2.4 State Transition Diagram oo

2.5 Activity Diagram
3 Design Patterns

3.1 Imtroduction

3.2 Strategy Patterno

3.3 Observer Pattern

NN

OU O W s

DO O

Chapter 1

Review

1.1 Object Oriented Programming

e 4 Pillars of OO: Abstraction, Encapsulation, Hierarchy, Modularity

e Abstraction: ignore inessential details

e Encapsulation: information hiding

e Hierarchy: “has a” and “is a” relationship. Inheritance, aggregation, composition
e Modularity: dividing code up into loosely coupled modules

e 4 Properties: Identity, Properties, Functions, States

e Rule of Big 3 (C++)

1.2 Relationships

e Association: No hierarchy (Separate life, no ownership, no whole-part)

Uses it in a method

e Aggregation: Whole/part (Separate life, ownership)
Has a pointer to the object

e Composition: Lifetime (Connected lives, ownership, whole-part)

Allocates memory for the object

e Inheritance: Generalization to specialization

Extends a class

e Multiple Inheritance: A class can be derived from two or more superclasses (solve using virtual
base)

e Polymorphism: Different objects react differently to the same message

e Realization: One element realizes (implements/executes) the behavior that the other model
element specifies

e Delegation: Passing a duty off to something else (alternative to inheritance)

Chapter 2
Object Modeling

2.1 Introduction

e Model: simplification of reality
e Reasons to make Models: Low cost, verify understanding, test ideas, ease of communication

e UML: Unified Modeling Language

2.2 Classes and Objects
e (Class name, attributes, functions
e + (Public), - (Private), # (Protected), / (Derived), (Package)
e italics (Abstract), parameter (Generic/Template), underline (static)
e Packages are represented by grouping classes
e Navigability: Arrows on association pointing to class that it can change
e Cardinality/Multiplicity: Expresses quantity of relationship

e Stereotype: Defines a new model element

2.3 Interaction (Sequence) Diagram

e Shows the interaction between a set of objects and their relationships

e Is dynamic and aids in knowing which classes should implement which functions

e Sequence Diagram: an interaction diagram that emphasizes the time ordering of messages
e Shows successful interactions

e Focus of Control: A tall, thin rectangle that shows the period of time during which an object
is performing an action

2.4 State Transition Diagram

e Shows the dynamic flow of control from state to state of a particular entity, as well as the
behavior of classes in response to external stimuli

e States: represent conditions/situations during the life of an object

e Transition: arrow showing the path between different states. Must be labeled

e Initial State: Solid circle and only one may exist

e Final State: Bull’s eye and multiple my exist

e Choice: Diamond representing a condition

e Can have reflexive transitions as well as terminating (marked with arrow towards an X)

e Guard Conditions: A Boolean expression that is evaluated when the transition is triggered

e Composite States: A state that has sub-states (nested states)

2.5 Activity Diagram
e Shows the flow from one activity to another activity (flow chart)

e Deals with dynamic aspects of the system and deals with all types of flow (sequential, branched,
concurrent)

e Initial and final are same as state diagram

e Use bar to show a forking of control

Chapter 3

Design Patterns

3.1 Introduction

e Challenges: changes due to requirements, scaling, new technology.
e Design Pattern: represent the best practices used by experienced OO developers
e Benefits: saves times, common vocabulary, design reuse, documentation

e Three Types of Patterns: Creational (abstracting the object-instantiation process), Structural
(how objects can be combined to form larger structures), Behavioral (communication between
objects)

3.2 Strategy Pattern

e Separate changeable behaviors

e Program to interface not implementation

e Create concrete classes responsible for changeable behaviors

e Strategy: algorithms are separated from a class and encapsulated as a separate class

e FBach strategy implements one behavior

e Allows changing the object’s behavior dynamically without extending/changing the object itself

3.3 Observer Pattern

	Review
	Object Oriented Programming
	Relationships

	Object Modeling
	Introduction
	Classes and Objects
	Interaction (Sequence) Diagram
	State Transition Diagram
	Activity Diagram

	Design Patterns
	Introduction
	Strategy Pattern
	Observer Pattern

