
ENSF 480 Notes

Brian Pho

October 11, 2017



Contents

1 Review 2
1.1 Object Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Object Modeling 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Classes and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Interaction (Sequence) Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 State Transition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Design Patterns 6
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Strategy Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Observer Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



Chapter 1

Review

1.1 Object Oriented Programming

• 4 Pillars of OO: Abstraction, Encapsulation, Hierarchy, Modularity

• Abstraction: ignore inessential details

• Encapsulation: information hiding

• Hierarchy: “has a” and “is a” relationship. Inheritance, aggregation, composition

• Modularity: dividing code up into loosely coupled modules

• 4 Properties: Identity, Properties, Functions, States

• Rule of Big 3 (C++)

1.2 Relationships

• Association: No hierarchy (Separate life, no ownership, no whole-part)

Uses it in a method

• Aggregation: Whole/part (Separate life, ownership)

Has a pointer to the object

• Composition: Lifetime (Connected lives, ownership, whole-part)

Allocates memory for the object

• Inheritance: Generalization to specialization

Extends a class

• Multiple Inheritance: A class can be derived from two or more superclasses (solve using virtual
base)

• Polymorphism: Different objects react differently to the same message

2



• Realization: One element realizes (implements/executes) the behavior that the other model
element specifies

• Delegation: Passing a duty off to something else (alternative to inheritance)

3



Chapter 2

Object Modeling

2.1 Introduction

• Model: simplification of reality

• Reasons to make Models: Low cost, verify understanding, test ideas, ease of communication

• UML: Unified Modeling Language

2.2 Classes and Objects

• Class name, attributes, functions

• + (Public), - (Private), # (Protected), / (Derived), (Package)

• italics (Abstract), parameter (Generic/Template), underline (static)

• Packages are represented by grouping classes

• Navigability: Arrows on association pointing to class that it can change

• Cardinality/Multiplicity: Expresses quantity of relationship

• Stereotype: Defines a new model element

2.3 Interaction (Sequence) Diagram

• Shows the interaction between a set of objects and their relationships

• Is dynamic and aids in knowing which classes should implement which functions

• Sequence Diagram: an interaction diagram that emphasizes the time ordering of messages

• Shows successful interactions

• Focus of Control: A tall, thin rectangle that shows the period of time during which an object
is performing an action

4



2.4 State Transition Diagram

• Shows the dynamic flow of control from state to state of a particular entity, as well as the
behavior of classes in response to external stimuli

• States: represent conditions/situations during the life of an object

• Transition: arrow showing the path between different states. Must be labeled

• Initial State: Solid circle and only one may exist

• Final State: Bull’s eye and multiple my exist

• Choice: Diamond representing a condition

• Can have reflexive transitions as well as terminating (marked with arrow towards an X)

• Guard Conditions: A Boolean expression that is evaluated when the transition is triggered

• Composite States: A state that has sub-states (nested states)

2.5 Activity Diagram

• Shows the flow from one activity to another activity (flow chart)

• Deals with dynamic aspects of the system and deals with all types of flow (sequential, branched,
concurrent)

• Initial and final are same as state diagram

• Use bar to show a forking of control

5



Chapter 3

Design Patterns

3.1 Introduction

• Challenges: changes due to requirements, scaling, new technology.

• Design Pattern: represent the best practices used by experienced OO developers

• Benefits: saves times, common vocabulary, design reuse, documentation

• Three Types of Patterns: Creational (abstracting the object-instantiation process), Structural
(how objects can be combined to form larger structures), Behavioral (communication between
objects)

3.2 Strategy Pattern

• Separate changeable behaviors

• Program to interface not implementation

• Create concrete classes responsible for changeable behaviors

• Strategy: algorithms are separated from a class and encapsulated as a separate class

• Each strategy implements one behavior

• Allows changing the object’s behavior dynamically without extending/changing the object itself

•

3.3 Observer Pattern

•

6


	Review
	Object Oriented Programming
	Relationships

	Object Modeling
	Introduction
	Classes and Objects
	Interaction (Sequence) Diagram
	State Transition Diagram
	Activity Diagram

	Design Patterns
	Introduction
	Strategy Pattern
	Observer Pattern


