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Chapter 1

Review

1.1 Object Oriented Programming

e 4 Pillars of OO: Abstraction, Encapsulation, Hierarchy, Modularity

e Abstraction: ignore inessential details

e Encapsulation: information hiding

e Hierarchy: “has a” and “is a” relationship. Inheritance, aggregation, composition
e Modularity: dividing code up into loosely coupled modules

e 4 Properties: Identity, Properties, Functions, States

e Rule of Big 3 (C++)

1.2 Relationships

e Association: No hierarchy (Separate life, no ownership, no whole-part)

Uses it in a method

e Aggregation: Whole/part (Separate life, ownership)
Has a pointer to the object

e Composition: Lifetime (Connected lives, ownership, whole-part)

Allocates memory for the object

e Inheritance: Generalization to specialization

Extends a class

e Multiple Inheritance: A class can be derived from two or more superclasses (solve using virtual
base)

e Polymorphism: Different objects react differently to the same message



e Realization: One element realizes (implements/executes) the behavior that the other model
element specifies

e Delegation: Passing a duty off to something else (alternative to inheritance)



Chapter 2
Object Modeling

2.1 Introduction

e Model: simplification of reality
e Reasons to make Models: Low cost, verify understanding, test ideas, ease of communication

e UML: Unified Modeling Language

2.2 Classes and Objects
e (Class name, attributes, functions
e + (Public), - (Private), # (Protected), / (Derived), (Package)
e italics (Abstract), parameter (Generic/Template), underline (static)
e Packages are represented by grouping classes
e Navigability: Arrows on association pointing to class that it can change
e Cardinality/Multiplicity: Expresses quantity of relationship

e Stereotype: Defines a new model element

2.3 Interaction (Sequence) Diagram

e Shows the interaction between a set of objects and their relationships

e Is dynamic and aids in knowing which classes should implement which functions

e Sequence Diagram: an interaction diagram that emphasizes the time ordering of messages
e Shows successful interactions

e Focus of Control: A tall, thin rectangle that shows the period of time during which an object
is performing an action



2.4 State Transition Diagram

e Shows the dynamic flow of control from state to state of a particular entity, as well as the
behavior of classes in response to external stimuli

e States: represent conditions/situations during the life of an object

e Transition: arrow showing the path between different states. Must be labeled

e Initial State: Solid circle and only one may exist

e Final State: Bull’s eye and multiple my exist

e Choice: Diamond representing a condition

e Can have reflexive transitions as well as terminating (marked with arrow towards an X)

e Guard Conditions: A Boolean expression that is evaluated when the transition is triggered

e Composite States: A state that has sub-states (nested states)

2.5 Activity Diagram
e Shows the flow from one activity to another activity (flow chart)

e Deals with dynamic aspects of the system and deals with all types of flow (sequential, branched,
concurrent)

e Initial and final are same as state diagram

e Use bar to show a forking of control



Chapter 3

Design Patterns

3.1 Introduction

e Challenges: changes due to requirements, scaling, new technology.
e Design Pattern: represent the best practices used by experienced OO developers
e Benefits: saves times, common vocabulary, design reuse, documentation

e Three Types of Patterns: Creational (abstracting the object-instantiation process), Structural
(how objects can be combined to form larger structures), Behavioral (communication between
objects)

3.2 Strategy Pattern

e Separate changeable behaviors

e Program to interface not implementation

e Create concrete classes responsible for changeable behaviors

e Strategy: algorithms are separated from a class and encapsulated as a separate class

e FBach strategy implements one behavior

e Allows changing the object’s behavior dynamically without extending/changing the object itself

3.3 Observer Pattern
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